COURSE HANDOUT

Course Code	ACSC13
Course Name	Design and Analysis of Algorithms
Class / Semester	IV SEM
Section	A-SECTION
Name of the Department	CSE-CYBER SECURITY
Employee ID	IARE11023
Employee Name	Dr K RAJENDRA PRASAD
Topic Covered	Space complexity and examples
Course Outcome/s	Find the space complexity of an algorithm
Handout Number	8
Date	31 March, 2023

Content about topic covered: Space complexity

Space Complexity

The amount of memory an algorithm requires to function that is referred to as its space complexity. Any algorithm P's space complexity is given by S(P)=C+SP(I), where C is constant.

```
• Fixed Space Requirements (C)
```

- Independent of the characteristics of the inputs and outputs
 - ✓ It includes instruction space
 - \checkmark space for simple variables, fixed-size structured variable, constants
- Variable Space Requirements ($S_p(I)$)
 - depend on the instance characteristic I
 - ✓ number, size, values of inputs and outputs associated with I
 - ✓ recursive stack space, formal parameters, local variables, return address

```
Example 1:
```

```
Algorithm add (a,b,c)
{
 \\ a,b,c are floating type
 Return a+b+c;
 }
```

In the above algorithm a,b and c allocate one word size then the total size is "3", C=3, SP(I)=0

```
: Space complexity S(P)=3+0=3
```

Example 2:

```
Algorithm add1 (x1,n)
{
    \\ Sum1 and x1[i]
    Sum1 = 0.0
    for I =1 to n do
    sum1 =sum1+x1[i];
    return sum1;
```

}

In the above algorithm 'n' space for x1[], one space for 'n' one space for 'i' and one space for "sum1"

 \therefore The space complexity of above algorithm is

S(p)=n+3